Although radiotherapy and chemo-
therapy are powerful tools to treat
cancer, they also cause major side effects
by damaging or killing healthy cells
as well as cancerous ones. At Kuwait
University, Saad Makhseed is working
on a technique that promises to kill
cancer cells while leaving their healthy
neighbors unharmed.
ويعتمد النهج، المعروف باسم العلاج الضوئي الديناميكي Photodynamic therapy (اختصاراً: العلاج PDT) على مزيج من ثلاثة مكونات – الأكسجين والضوء وجُزيء يُعرف باسم المُحسِّس الضوئي Photosensitizer – وكل منها غير ضار بمفرده، لكن بإمكانها أن تقتل الخلية إذا جُمعت معاً بطريقة صحيحة.
When a photosensitizer is
illuminated by the correct wavelength,
it reacts with nearby oxygen to
transform it into a more reactive form
known as singlet oxygen. These highly
reactive oxygen molecules are toxic
to cells, damaging their components
and eventually causing them to die.
By ensuring that the photosensitizer
is only taken up by cancer cells and
illuminating them as precisely as
possible, clinicians can provide PDT
to treat cancer without damaging any
healthy tissue.
يهتم مخصيد، المتخصص في الكيمياء ، بدراسة الجزيئات المعروفة باسم الفثالوسيانين Phthalocyanines (اختصاراً: جزيئات Pcs) في محاولة لتحسين أدائها كمحفِّزات Catalysts . أثناء قراءته عن هذه الجزيئات اكتشف أنها تُستخدم في العلاج PDT. وقال: “يستهويني الطب، لذلك بدأت في قراءة المزيد عن هذا النهج البحثي والصعوبات والتحديات، وأنواع الخصائص اللازمة لاستخدام هذه الجزيئات في العلاج الضوئي الديناميكي”.
Refining Pcs for target treatment
In principle, Pcs are quite efficient at
producing singlet oxygen, but a few
drawbacks limited their use in practice.
The first challenge is that Pc molecules
aren’t soluble in water and so tend to
clump together, forming aggregates that
no longer react with oxygen.
To overcome this, Makhseed
designed and synthesized Pcs with bulky
attachments above and below them, like
two donuts sandwiching the Pc core. By
using charged attachments, he hoped to
prevent the molecule from aggregating.
تواصل مخصيد مع بيتر زيمشك Petr zimčík من جامعة تشارلز Charles University في جمهورية التشيك لمساعدته على تحليل الجزيئات الجديدة. وقال زيمشك: “كانت لدينا بعض المرافق التي لم تتوفر لدى مخصيد في ذلك الوقت، لذلك تمكنا من تقييم الخصائص الفيزيائية-الضوئية للمركب”. وأضاف: “لقد أعاقت التعديلات المُدخلة تماماً عملية التكتل، وهو أمر مهم حقاً في هذا المجال. لقد حظيت هذه الجزيئات بإعجابنا حقاً”.
In continuing collaboration with
Zimcík, Makhseed has refined the Pc
design even further. The latest iteration
replaces the zinc at the core of Pcs with
indium, making them even more efficient
at producing singlet oxygen.
The second major challenge is to
ensure that Pcs are only taken up by
cancer cells. This is accomplished by
attaching specific functional groups to
the Pcs to make them more attractive to
cancer cells. For example, because cancer
cells divide rapidly, they have higher
metabolic rates than normal cells, so
affixing a Pc to a sugar molecule would
make it more likely to be taken up by a
cancer cell.
Synthesizing large, complex
molecules is no easy task. Thanks to
funding from KFAS, Makhseed now
has the facilities to test the photo-
physical properties of the molecules he
develops, but he still needs to send them
to Zimcík and other collaborators for testing in cell cultures, and, eventually,
in animal models.
تغلب مخصيد مؤخراً على التحدي المتمثل في تطوير تقنيات التوليف المتكررة. وقال: “لقد طورنا لبنة ذات وظائف معينة تسمح لنا بربط أي شيء نريده بالفثالوسيانين”. وباستخدام هذه التقنية، يمكنه إنتاج الجزيئات Pcs بملحقات إضافية مختلفة لاستهداف الخلايا السرطانية، سواء من الكربوهيدرات أم الأحماض الأمينية أم الدهون، على سبيل المثال. وقال مخصيد إنه “باستخدام المعلومات المتوفرة من الأبحاث الحيوية، ينبغي أن نكون قادرين على تصميم جزيئات تنتقيها الخلايا السرطانية وتحبذها إلى حد كبير”.
سجل مخصيد براءة اختراع لهذه الجزيئات وتقنية تركيبها الجديدة، وهو يعلق آمالاً كبيرة عليها. وقال: “إن هذه التقنيات لن تفيد المجتمع الكويتي فحسب، وإنما منطقة الخليج وحتى العالم بأسره”. وأضاف إن “هذا النوع من العلاج لا ينطوي على إجراءات باضعة، لذلك يمكن إجراؤه كلما دعت الحاجة. يمكن أن يكون انتقائياً جداً، لذلك لا يسبب آثاراً جانبية لدى المرضى، وليست هناك حاجة لإجراء عملية جراحية”.
يخطط زيمشك لإدراج جزيئات مخصيد في مشروع عالمي لاختبار فعالية الجزيئات المختلفة من Pcs. وإلى جانب المركبات التي ركّبها مخصيد، يجمع زيمشك جزيئات من مختبرات في الصين وروسيا وإسبانيا وبولندا وأماكن أخرى. وقال مخصيد: “إن التقييم البيولوجي لنشاط العلاج PDT يُجرى بشكل مختلف في كل مختبر، الأمر الذي يجعل من الصعب مقارنة النتائج. لذا، أردنا توحيد البروتوكول وجمع أفضل الجزيئات التي نُشرت ومقارنتها لمعرفة الاختلافات الموجودة بينها”.
Makhseed’s new technique
for tweaking the structure of
phthalocyanines also opens up the
possibility of customizing them for use
as catalysts, bringing him full circle.
In addition to the PDT work, he’s
developing Pcs customized to absorb
carbon dioxide or purify water and is
also starting a collaboration with a lab at
Durham University in the UK to develop
organic light-emitting diodes.
وقال مخصيد إن “المعرفة التي نكتسبها مهمة جداً بالنسبة للكويت. يعطينا هذا البحث معلومات جديدة ويساعدنا على تطوير جزيئات مثلى بسرعة أكبر. وأعمل على بناء علاقات تعاون مع جهات خارجية وإعادة تلك المعرفة إلى الكويت”.
يأمل مخصيد أن يتطور عمله إلى إنتاج علاج فعال للسرطان وأن يصبح متاحاً للجميع. وقال: “ما لدينا الآن يمكن استخدامه كدواء في المستقبل إذا ساعدنا الممولون في العثور على الفرق البحثية المناسبة وإعداد تجارب إكلينيكية. أرغب في أن أكون جزءاً من مجال نساعد من خلاله الأشخاص على الحصول على العلاج، بل وحتى على الشفاء التام”.